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ABSTRACT

The dymamic characteristics of a variable-mass elastic system are under
investigation. The mathematical model consists of a siender, elastic case,
closed at one end and open at the other end, with internal gas flow. The
model represents a solid-fuel missile.

In the preceding six-month period the problem has been formulated and
the general equations of motion derived. In the six-month period covered
by this report particular attention has been given to the internal gas flow
problem. PFurthermore, the vertical flight case has been used to study the
meaning of normal mode vibration. It appears that for a variable-mass sys-
tems one cannot speak of natural frequencies and normal modes, in an ordi-
nary sense, although a solution in terms of the eigenfunctions of the cor-
responding constant-mass system is assumed. This solution should be
regarded as a mathematical convenience with no particular physical signifi-
cance attached.
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l. Imtroduction

The present semi-annual technical progress report covers the period
December 1, 1965 - May 31, 1966. The first semi-annual technical report
covering the preceding six-month period contains the problem description
and formulation. This will not be repeated here and we shall extract the
pertinent equations from the first report.

The motion of a missile, envisioned as a slender elastic body of
variable-mass, is described by means of three rigid-body coordinates, X(t),
Y(t) and 8(t), and two elastic-body displecements, u(x,t) in the axial di-
rection and y(x ,t) in the transverse direction. From section T of the first
semi-annual report we extract the equations of motion, Egs. (7.29) through
(7.33), and the associated boundary conditions, Egs. (7.3%4) through (7.36).

The equations of motion are
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where the latter two equations are subject to the boundary conditicns
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The equations of motion and the boundary conditions involve such quan-
tities, some of them in an implicit way, as the stiffness of the shell, the
missile mass distribution at any time, drag forces as well as internal viscous
effects, mass flow rates, internal pressure and fluid velocity distribution,
~ete. It follows that to be able to investigate the dynamic characteristics
of the vehicle one must have additional relations at his disposal. The in-
ternal flow problem of a missile is a relatively complex problem in itself
even for the case in which the missile is stationary. An approximation of

constant chamber pressure is often used, together with the resulting linear




velocity distribution of the gas flow. This assumption ignores the pressure
drop due to flow acceleration as well as the effects of internal friction
and, in addition, the fact that the control volume is accelerating. The
assumptions of constant pressure and linear velocity will be examined. The
terms resulting from the internal gas flow which appear in the equations of
motion can be regarded as forcing functions.

We shall make the assumption that initially the mass distribution is
uniform and, furthermore that rate of fuel burning is the same for any
point in the missile which implies that the burning rate is independent of
pressure and temperature. As a result, the mass distribution does not depend
on the spatial coordinate x but only on the time ¢

m_ (x,t) = m_(t) ' (1.8)

This also implies that the center of mass of the missile does not shift with
respect to the missile. Since the center of mass is stationary relative to
the missile, at the half-way point between the ends of the missile, we shall

find it convenient to measure x from the center of the missile instead of

the aft end. This fact becomes irmediately evident since in this case we
have r/‘? m_ x dx = O. One should also note that, in the process, X(t) and

Lfe ©
Y(t) become the coordinates of the center of mass.

The equations of motion, Egs. (1.l1) through (1.5) are highly nonlinear
and coupled. To add to complexity the mass distribution is time-dependent. |
The closed form solution of the equations in the present form is not possible.
The purpose of this research is to study the dynamic characteristics of the
missile so that an analysis, even under simplifying assumptions, is highly
desirable. An entirely numerical solution of the equations would tend to
obscure these characteristics but, nevertheless, will be performed to check
the validity of the assumptions.
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t X The flight of many sounding rockets con-
x sists of a vertical, upright flight. We shall

I be interested in studying this case in more

:, 6 = _g detail and, to this end, we wish to define a

Zl ' Y"primary motion" as the vertical rigid-body

flight of the vehicle. The deviations from the

l primary motion will form a "secondary motion"

;a\ ‘ and will be regarded as small perturbations.

Y «——l i Finally, the equations of motion are linearized

Figure 1 by assuming small elastic displacements.
Although in their final form the equations of motion are linear, their

solution is by no means an ordinary task. It should be recalled that the
mass distribution is time-dependent and the vast majority of literature '
treating the subject of elastic missiles is concerned with constant-mess
systems. For variable-mass systems, the normal modes, in the commonly ac-
cepted sense, for the elastic motion have no physical meaning. Nevertheless,
one still can use a series solution using the eigenfunctions of a related
constant-mass system for the purpose of eliminating the spatial varieble x
from the partial differential equations for the elastic axial and transverse
motions. Two sets of ordinary differential equations with time-dependent
coefficients, one for the axial motion and one for the {ransverse motion,
are obtained. Fortunately, due to the uniform-mass assumption, the set of
equations for the axial motion is uncoupled and a solution can be obtained
without much difficulty. On the other hand, the set of equations for the
transverse motion is coupled and, in addition, some of the coefficients con-
sist of axial motion terms. A closed form solution of such a set is not
possible. One can obtain a solution, hovever, by retaining only the axial
term corresponding to the first eigenfunctior and the transverse terms cor-
responding to the first two eigenfunctiorssince, for such a case, the set
of equations for the transverse motion consists of two uncoupled equations.
This solution will be checked against an entirely numerical solution of the
problem to verify to what extent one can justify using such a small number

of terms to describe the axial and transverse motions.




It should be pointed out that, although some vibration is obtained,
this is not a normal mode vibration. The system has no natural frequencies
in the ordinary sense. The fact that we use eigenfunctions and eigenvalues
corresponding to the related constant-mass system to expedite the solution
should be regarded as a mathematical device with no particular physical
significance attached.

2. The Internal Flow Problen.

From the point of view of fluid flow problem, the missile will be re-
garded as a cylindrical container of uniform cross-section, open through a
nozzle at the end x =-L/2 and closed at the end x = L/2. We shall assume
that the nozzle length is relatively short compared with the length of the
missile. Since the end x = L/2 is closed, the burned fuel will flow in the
negative x-direction so that at any point x the flow rate will be equal to
the total rate of change of mass between the point x and the closed end.
Denoting this guantity by Mo(x,t) (note that according to the previously
used notation My(-L/2,t) = M,) and using the continuity equation for the
fluid, we have

. /2
Mc(x:t) = JL ﬁc(g:t) @€ = - PF AF v(x,t) (2.1)

X

where § is a dumyy variable of integration, Pp is the fluid density and Ap the
fluid cross-sectional area. The negative sign accounts for the fact that

the flow is in the negative x-direction. As a first approximation, one may
assume that the pressure in the burning chamber is uniform (Ref. 4, p.k2)

and that the :é‘low is frictionless. Hence, PF will be constant and, assuming
that Ap is constant, we have mp = pp Ap = const. Using Eq. (1.8), we obtain

v(x,t) = - =——— = - = (L/2 - x) (2.2)

so that v(x,t) is a linear function of x.




One must also make some assumpiions as to the mass flow rate as a func-
tion of time. This will be largely determined by the grain configuration, in
addition to inhibitors, pressure transients, etc. A simple cylindrical
grain shape results in approximately "neutral burning” whereas various cruci-
form or multiple grain forms may be designed to give either "progressive" or
"regressive” burning. Typical mass flow rates amenable to analytic treatment
may be approximated as shown by a rectangular function, or slightly more
accurately by a trapezoidal function (see Ref. 1)
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Figure 2

Iet us for the moment relax the uniform pressure assumption and derive
an expression of the pressure as a function of the spatial coordinate x. T6
this end we use the equation of motion for the fluid element (see Eg. (5.2)
of the first semi-annual report), which for the axial fluid flow and planar

nmissile motion reduces to
= el s 9 2
fECF*fm*fRF‘mFRc'“‘Fe""“['&?(%")
a -~
55 g v 3 | (2-3)

Concentrating on the axial component and assuming steady-state, frictionless,
constant-area flow,Eq. (2.3) yields

2 - -
-%}%:g_i(pFV)ﬂ“pFR -1 | (2.4)




Assuming that :I:t.c is known, we have one equation and three unknowns, p, Py
and v. An additional equation is Eq. (2.1) where M,(x,t) should be regarded
as known, as is A, if the burning rate of the propellant is known (assumed
independent of pressure and time). A third equation can be obtained by
assuming a perfect gas

P=ppRT (2.5)

which introduces the absolute temperature T as a new unknown, since the gas
constant R is assumed as known. Consistent with the perfect gas assump-

tions, we have the following relations

Q

- I
p - C, =R C, =3 (2.6)

where Cp and C, are the specific heats and y is the specific heats ratio.
The above equations can be supplemented by the energy-heat relations

1l 2 _ :

where h is the enthalpy at any point and hL /2 is the enthalpy at the closed
end of the missile. The reference enthalpy, hr s can be taken zero. Inte-
grating Eq. (2.4) and using Egs. (2.1) and (2.5), we obtain

= -P—2+JL/2L§ 1ag
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In addition, Egs. (2.1), (2.5) and (2.7) yield
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which is a quadraticequation in v. One can solve Eg. (2.9) for v and in-
troduce into Eq. (2.8) to eliminate its dependence on v. In most cases the
contribution of the integral in Eq. (2.8) is relatively small and therefore
neglected. This is equivalent to assuming an unaccelerated control volume.
Ignoring the integral in Eq. (2.8) and introducing Egs. (2.6), as well as
the expression of v from Eg. (2.9), into Eq (2.8) we obtain

2
Ag 1/2
D TL/E ﬁ 2(x,t) ]
¢ (2.10)

p __1 4 1 [ - -
PL/é yITivET 1+ (y-1)(v+1)1-2c¢

which agrees with Price (see Ref. 3).

Next let us examine the relative magnitude of the integral in (2.8).
For a typical high-acceleration missile with a maximum Mach numbei' in the
combustion chamber of 0.4 we have p
to the flow acceleration. For Prfe = 2000 psi the pressure drop amounts to

0.95 pp, /2, or a 5% pressure loss due

&p = 100 psi. To determine the magnitude of the noninertial term, we need

.

R, - i. For no rotation, 8 = § = 0, we have R, -1=X+ u and since u is
sign-variable we can ignore it. For a 10 in.-diameter missile of approxi-
mately 100 in. leng‘t:r'l, 425 1b. weight and subjected to PL/e = 2000 psi, the
linear acceleration X will be of the order of magnitude of 5000 ft sec'a,
depending on the nozzle configuration, drag, etc. Assuming the fluid den-
sity Pp to be essentially uniform, the noninertial term produces a pressure
change 1

/2

~ p
/2 T

Xdx = 9psi - (2.11)
which is about 0.5% of the total pressure, hence, insignificant. Note that

this is a pressure increase rather than a pressure drop so that it tends to

render the pressure more uniform.




The magnitude of the friction term Ty

a value for the friction factor, f = 0.005 (see Wimpress, p. 33) and again

may be estimated by assuming

assuming uniform pF. Denoting by z the perimeter of the flow area the

pressure drop due to friction can be written as

/2 fvezpF

-L/2 2Ap

dx = 3.3 psi (2.12)

which is again very small.
Hence, the uniform pressure and linear velocity assumptlons appear to

be falrly reasonzble.

3. The Vertical, Upright Flight.

Ve shall assume that the vertical, upright flight (see Figure 1) con-
sists of a primary motion defined by the rigid-body vertical flight and a
secondary motion defined as a perturbation about the primary motion. With
this in mind, one can simplify Egs. (1.1) through (1.3) by assuming X >> Y,
X> 0 and 8 = -211, so that second and higher order terms in Y and © are

ignored. These assumptions lead to the equations

. JL/a . /2 _ .
-MX - /o mu dx - L/g(fRF i+ mcv) dx - Mg+ Fy =0 (3.1)
v ee e - /2 /2
-M‘:(Y+2€3X+9X)-jL mcyd.x-efL mu dx - 26 mu dx
-L/2 -L/2 : -L/2
[ 2.3 (3.2)
- b i - j dx + F =0 302
-L/2 RF Yc

/2 /2 rLQ
JL mydx-(9X+Y+29X) mu dx - m[y(x+u)-yu]d.x
-L/2 Lfe © -L/2
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. JL/2 . (/2
-8 JL/ mc[(x + u)2 + y2] ax - 28 JTL/ mt[(x +u) u+yyl ax ‘

-L/2 2
” (@ T T Gerwlaxs ]
+ . .T+nv)y-Ff . .3 (x+u)]ax+ mgy dx
-L/2 RF c RF -L/2 c
+ Yy - XFy +Fg, =0 | (3-3)

Equations (3.1) through (3.3) can be further simplified by assuming that the
average elastic motion (even when multiplied by a weighting function) is
zero and that the elastic displacements are sufficiently small so that sec-

ond order terms can be neglected. With these assumptions, we obtain

. /2
- MEX - JL (fRF « 1+ mcv) ax - Még +F c =

=0
-L/2 X

. e /2 _ _ | '

-MC(Y+2SX+6X)- P e JAX +Fy =0 : (3.4)
-L/2
6 2 & (F._ .3) xdx +YF Fy =0

- mx dx - big . J) x + - XF, + =

-L/2 c -L/2 RF Xc Yc 6c

which establishes the rigid-body nature of X, Y and 8.
For no engine gimbal angle, we have
2 _

F.  .jdx =0 | (3.5)
/e

which implies that there is no transverse camponent due to fluid fiow.®
Furthermore, for the study of the dynamic characteristics we shall concen-

trate on the equivalent of the free-vibration case and ignore the external
forces

Pl A
Fye = Fye = Foe = Fue = Fyc =0 (3-6)

*The Coriolis effect is accounted separately.




so that the last two of Egs. (3.4t) are identically satisfied by
Y = =0 (3 '7)
whereas the first one yieldsthe axial acceleration

X =- '1%1: _I/jz (T - 1 +0v) ax  (3.8)

., The Elastic Motion.

‘In view of the results and assumptions of the preceding section the
equations for the elastic motion, Egs. (1.k) and (1.5) become

2] du . >y = T . _
ﬁ(EAc S )tmu=-nX-fo . .i-nv-ngs= £(x,t) (4.1)
and
9_2__<EI§_21>-§—<P§1>+m"-0 (k.2)
2 2 ox ox ey = °
ox ox
where the axial force, P, is given by
ou

Equation (%.1) is subject to boundary conditions (1.6) and Eq. (4.2) to
boundary conditions (1.7). '

It must be noted, at this point, that the differential equation and
the boundary conditions for the axial elastic displacement u(x,t) do not
contain the transverse elastic displacement y(x,t). On the other hand; the
differential equation and the boundary conditions for y(x,t) do contain
u(x,t) » as can be seen from the expression for P. Hence, one must first
solve for u(x,t) eand then for y(x,t). ‘

Let us assume the solution of Eq. (4.1l) in the form of the series

aGot) =5 o () g (6 (.1)




where 9y (t) are time-dependent generalized coordinates and ¢ ; (x) are the

solutions of the eigenvalue problem consisting of the differential equation

& (o ®N_ . WP
T B /T E Y (4.5)

and the boundary conditions
EA %-;'% =0, x=-L/2, L/2 (.6)

This eigenvalue problem corresponds to the axial vibration problem of a rod

of mass per unit length m,e The functions p; are such that L/2

m_ .. dx
-L /2 o "iv]
= 61:j » where sij is the Kronecker delta, and, in addition J‘L/ 2 n @, dx = O.
L /2 o1

The latter expression is consistent with the zero average elastic motion
postulated in the preceding section. In this case m, is taken as the initial
mass per unit length of missile, hence independent of x. From the uniform
burning assumed in Secfion 2 we conclude that the distributed mass at any
time is

mc(t) =m_ -6t =m (1 - Bt) (4.7)
where B = ﬁxc/mo. Note that in the derivations of Section 2 of the first
semi-annual report the sign of the mass increment was such that mc must be
regarded as positive although the system loses mass.
Introducing Eqs. (4.4) and (4.7) into Eq. (4.1), and recalling that

the functionse; satisfy Eq. (k.5), we obtain

n

‘ o 2 _
2 m [(1 - Bt) §; +w,% q) P, = £x,t) (4.8)
i=1
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Multiplying Eq. (4.8) by ¢; and integrating over the length of the missile 1
we obtain a set of uncoupled ordinary differential equations

(1-8t) §, +w,% g, = U (t), (3=1,2,---,n) (4.9)
where
L/2
u,(t) = J-LL/a £(x,t) 9, (x) ax, (i=1,2,---,n) (4.10) |

play the role of generalized forces and contain terms due to vehicle accele-
ration and internal gas flow. Due to the relatively rapid transition to a
steady-state situation consisting of constant burning (see Figure'e) » the
time dependency of Ui(t) may be assumed in the form of a step function for / ]
the duration of the powered flight. 1
By making the substitution 1-8t = 12 in the homogeneous part of Eq. :
(4.9), we obtain

2

dq. dq_i 2w
i 2 _ _ 3
;‘2—— = a-;_ + A‘i Tqi = o) )‘i = B (ll-cll)
T
which has the solution

where Jl and Yl are Bessel functions of the first order and first and second

kind, respectively. The solution of Eq. (%.9) can be written in the form

q,(¢) = (1-Bt)1/2[cli I, (h JIBET + Cyy Yl(xiJT:§¥3]

U,
l . . - N
== (i =1,2,---n) (4.13)
w
i
where U; is the amplitude of Ui(t) and C;; and Cp; are constants of inte-
gration which are determined by the initial conditions. Letting the initial

conditions be



1h

aGet) - u (x), 2B | o (k.14)
t=0 t=
and denoting
/2
_[L s uo(x) cPi(X) dx = vy (i=1,2,---,n) (4.15)

-L/2

it can be shoun that the solution for the axlal elastic displacement is

- /w.2)(l-8t)l/2
t r.) I (h. JiBT)
u(xst) = z{J(k)Y(A)-J(,\)Y(A)[YO(l) 14y A8E
g o X0y
- Jo(hi) xl(Ai J1IBt) |+ Ui/wi }q:i(x), A = 5 (4.16)

Since Aj; >> 1 we can use asymptotic expansions for Bessel functions of large
argument and reduce Eq. (4.16) to

u(x,t) -z [y = 2 )aeped ™™ cos 1, (LIFET + +- ] ?5(x),
i
b =k (h17)
i B *
where the square bracket can be identified as qi(t) .
Now we are in the position to attempt a solution for the motion y(x,t).
As in the case of the axial motion, we assume that the transverse elastic

displacement can be written in the form of the series

n

ylo,t) =) 450G 1408) (4.18)
=L o

where 1) j(t) are generalized coordinates and q(j(x) are eigenfunctions obtained
from the solution of the eigenvalue problem defined by the differential

equation
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2

dz\ M)_mw (4.19)

and the boundary conditions

2 2
ay d S A -
EI =5 =0 and ——-(EI -—-2—> =0, x =-Lf2, Lf2 (4.20)

L, L
The functions ¥ are such that j /; m, Wi'lfj dx = 8,5, f /j
~-L/2 -L/2

/2
and JL m, x ¥ 3 dx = O vhere the latter two expressions Justifly some of
-L/2 '

the simplifications in the equations for the rigid-body motion obtained in
the preceding section.
Introducing Eqs. (%.3), (%.4), and (4.18) into Eq. (4.2), and recalling
Eq. (4.19), we obtain
il d
Y m N(CLORREARINE Z 2 a & (en, o2 f| g0 =0 (2
J=1 i=1 j_l

Multiplying Eq. (4.21) by V. and integrating over the length of the missile,
we obtain '

: . -
(1-Bt) n, +Q 1. -

o
'll‘[\/\ﬂ
'E[\/!b

Pijr (t) 'qj = o (4.22)

where

d
(t) = J: o q, (8) ¥,.(x) - (Ba, 33{— —-"—) dx (k.23)

In view of the boundary condition, Egs (4.6), Eq. (4.23) reduces to

ap, ay, af
— i _..__2:. .___I; dx ()""211')
Py 5e(t) =g, (¢) S e & & &
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Unlike the set of equations for the axial motion, the set of equations
for the transverse motion, Egse. (4.22), are coupled. By retaining a limited
number of terms in the _eﬁ@gns_io_qsf (4.4) and (4.18) one can uncouple Egs.
(4.22). To this end, we notice that when the integrand in Eq. (4.24) is an
odd function the integral is zero. But c,oi is odd if i is odd and ﬁ!r is odd
is r is even and vice-versa. In addition, :Pi and 9, are such that if they
are even functions their derivatives are odd functions and vice versa.

Hence, one can write

/2 dp, Ay, 2
) -, 1) Jr:/z EAe a-xiéx—l) = = Qpyy 9 (t)

P p(t) = P, (8) =0 | (k.25)
- /2 ap, . ay,. 2
Piop(t) = - g (t) JL B (o) &= - G )

-L/2

s0 that retaining only the first term in series (L.k) and the first two
terms in series (4.18), Egs. (%.22) reduce to

(l-Bt) :ﬁl + Qi Tll_- Qlll q‘l(t) nl =0
o, (1.26)
(l-St).'ﬂz +O N, - Q,, o (8) M, =0
which are uncoupled.
Consider the typical equation
n ,
(et) 5+ a2 - () ot )n=o0 (4.27)

k=0

and use the Frobenius method to cbtain a solution. To this end we let the
solution of Eq. (4.27) have the form
[--]

‘n =Z Bn'tn+s (h"es)
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so that
o«© = -]
z Bn(n+s)(n+s-l)tn+s-2-8 Z Bn(n+s) (n+s -l)tn+s-l
n=0 - n=0
[-.- 2 -]
n+s+1 Z n+s+2 _
+(02-Q0)213nt -Q B t -me= =0
n=0 n=0
which can be written as
(-] ©
: n+s -2 N n+s-2
2 Bn(n +s)(n+s-1)% -8 ), ﬁn_l(n +s-1)(n + 5 - 2)%
n=0 n=1

5 n+s -2 b +8 -2
+(Q‘2_QO) Z Bn_et "Ql z Bn_3 tn s

n=2 n=3

n+s -2

- % i By ® Came 0
n=h '
The ebove equation is satisfied if
B, s(s-1) = 0
Bl(s+l)s-BBos(s-l)=0
32 (s +2)(s +1) -8B (s +1) 5 + 30(02 -qy) =0 (4.29)
By(s + 3)(s +2) - BBy(s +2)(s + 1) + Bl(n2 - Q) - By =0

Bh(s + 4)(s +3) - BB3(s +3)(s +2) + 32(02 - QO) - BQ -ByR, =0
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Letting a solution be given by
s =0, Bo and Bl arbitrary
ve can obtain from Egs. (4.29) all of the coefficients B,y n =2, in terms

of By and By vhere the latter play the role of constants of integration.
For s = 0, Egs. (4.29) can be written in the form of the recurrence formula

o -
_gqn -2 Q0 .
Bn =8 n Bp1 - n{(n - 1) n(n -1) Z U Bp-o-x .
k=1
‘n 22, B, =0 for i negative : (4.30)

Equation (4.30) yields

B, = - 5 (P0)z,

By =g [8(Fqp) + I8, - g (Pap)m,
= 35 [-B%(P-q)) + 2 (Pq)® +8q, + Q) By + 35 [-8(cPq ) + q 1B,
By = 55 [-(834q)) (P-q)) + 2 (P ) + p%q, + Ba, + o 1B, (.31)

+ 55 [85(Pag) + g (P-q))® + 8o + Q1B

and upon introducing the above coefficients into Eq. (4.28) we obtain

7 = ZBt = B, +Bt--—(02 Q)Bt +{€[-a(02 Q)

n=0

+Q1]Bo'%(92'%)Bl}t3+{}"5[’52(02‘%)+%(02‘QO)Q+BQ1

+ Q) By + 15 [- B(P - q) + Q1B |+ +{ (8 + o) (P - q)
<n2 a0)” + 8% + 80, + 01 By + 35 [-82(F - o) + L (P - o)

+ an + Q1 B } £ 4 cmmm
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=By { 1 - 5 (Pt + § [-8(Pq) 3 + Lo [a8q,

+ % (n"’-%)2 - Eia(nz-c;zo)]th + 32“—5 [o 480, + qul + 32- (ﬂe-cz(,)2

- (B340 ) (Pg ) 17 + mmmmmmeeee J (k.32)
+ By {t - % (02-Q0)t3 + %—2— [q,-8 (ne-QO)]tl‘ + %6 [ BQ,

+ %.(de-qo)e - ae(c?-qoo]t5 + cmmmmmmeen }

Hence,. one can write the solution of Egqs. (4.26) in the form
My(t) = By Mos(t) + By M58, (5 = 1,2) (%.31)

where

Tog(t) =1 - 3 (9 - q)t? + % [g - B(B - quTe3 + - .
' (4.32)
Thy(t) =t - 3 (e - )t + L5 [g - B(F - q)Ie* + -

and Boj and B, 5, (3 = 1,2), are constants of integration to be determined
from the initial conditions. Introducing Eq. (%4.31) into Eq. (4.18) we ob-

tain
2

ylxt) =), ¥ [Bos Ts(e) + By, 1y () | | (+.33)
J=1

letting y(x,0) and y(x,0) be the initial transverse displacement and velocity,
respectively, we obtain without difficulty

5y
Bog = [y jp o Y30 ¥0x0) x

By = JL/Q

(4.34)

a0 4 3(0) ax



It appears that, for no external forces, y(x,t) can be zero if the ini-
tial conditions are zero or they are proportional to either \#j(x) or x V j(x) 5
(5 =2).

5. Results
The equation
2 1/ U 2 U, -
u6ot) =), 9360 [Qon )7 Cogy - ) con 5L Qs )+ L |
J=1 @y o
(5.1)

is not particularly amenable to numerical calculation because of the ex~
tremely large argument of the cosine term. However, for small time, t, the
radical in the above term may be expanded by means of the binomial expan~
sion formila to give

cos —j-[l (l ;p_gL ....)]:cos E:;(%P—--Q-B%f-+ ...)
(5.2)

s0 that for t << 1, we may neglect the (Bt)2 and a1l higher order terms in

t, as well as set

@ - Bt)l/l‘ T (5.3)
s0 that a simplified expression for u(x,t) appears as
n U .
ulx,t) T ) 9y(x) [ B + (o, ;JE) cos @5t | RS
J=1r J _

Although this form has definite utility for the calculation of the axial dis-
placement for very small t, it neglects the change in the frequency and am-
plitude of vibration as a function of time due to the change in the mass.
However, we are interested in u(x,t) for the entire period of burning since
it is required for the calculation of y(x,t).



With this in mind, a simple computer program has been written for the
Control Data 3400 digital computer. Input to the program requires values
of Young's modulus, length end area of the missile case, area of the fluid,
nozzle throat area, and internal fluid pressure together with the mass per
unit length and the time rate of change of the mass per unit length of the
missile. The muber of terms in the series is also read in as input in
order to be able to evaluate the rate of convergence of the series. The
output consists of values of the axial elastic displacement at discrete in-
tervals of x for discrete values of time from time = O to burnout. The
time increment is determined from the relation

h
c

(5.5)

T =

where h is the spatial increment and

c - JEATa (5-6)

so that a sufficiently large number of deflected shapes are obtained over
a cycle to ensure representative coverage. Results for 1, 2, 10, and 20
term series have been obtained for a typical solid fuel missile with the
following physical properties:

E =30 - 10° m/in®
A, =753 in?
A = 36.4 in®
Ay = 18.2 in®
m, = 0.011 b sec2/in2
l;lc = 0.00L 1b sec/in2
L =100 in

2000 1b/in®

'd,
Q
Ny



For 9 increments of length, a time increment of approximately 0.000078 sec
results. A comparison of the deflected shape for different numbers of terms
in the series at a typical time appears in Figure 3, while Figure I shows
the deflected shape of the missile at several selected times through one
cycle. |

6. Conclusions and Plans for Future Work

Tﬁe five coupled, nonlinear equations of motion of a solid fuel missile
were derived in the first semi-annual technical report. In the present re-
port, the problem of the internal fluid flow has been investigated in order
to determine a suitable pressure and velocity distribution within the missile
case. To this end, the effects of the pressure drop due to flow accelera-
tion, the pressure increase due to the noninertial acceleration of the con-
trol-volume, and the pressure drop due to friction together with the subse-
guent effect on the velocity distribution were investigated. The conclusion
reached was that the assumption of uniform chamber pressure and linear
velocity distribution was reasonably justified.

A primgsry motion in the vertical direction was then postulated with the
lateral rigid-bodj translation, the-rigid-body rotation and the elastic de-
formations in both the axial and lateral directions considered as second
order effects. A solution for the axial elastic deformation was then ob-
tained in the form of a series of the eigenfunctions of the corresponding
constant-mass systems multiplied by time-dependent generalized coordinates
whose amplitudes were determined by means of the initial conditions and the
forcing functions resulting from the fluid flow. It should be stressed that,
although the eigenfunctions of the constant-mass missile are used, this is
merely a mathematical concept and does not imply normal mode vibration. On
~ the contrary, the Asystem does not possess any natural frequencies in the
ordinary sense, and the amplitudes are not consta.nt' at a given period in
different cycles.

Unfortunately, the same series approach to the lateral vibration re-
sulted in coupled equations due to the presence of the axial force in the

equation for y(x,t). In order to uncouple these equations, it was necessary
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to assume that the deformation in the axial direction could be approximated
by the first term of the series for u(x,t) and the first two terms of the
series for the lateral motion y(x,t). Of final consequence, it was shown
that no lateral elastic motion resulted under the assumed initial conditions
¥(x,0) = ¥ (x,0) = 0.

The final phase of this project will consist of a completely numerical
solution of the original five coupled, nonlinear equations of motion. Finite
differences will be used together with numerical integration and an intera-
tive sequence to cope with the nonlinearity of the equations. A computer
solution is obviously in order with this approach and the Control Data 3400
will be utilized. While assumptions as to the relative magnitudes of the
rigid body motions as opposed to the elastic motions will not be necessary,
it is envisioned that the same assumptions concerning the fluid flow will be
used as are used in the present report.
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